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Abstract

The di�erential pressure between the entrance and throat of a Venturi will ¯uctuate if the liquid
¯owing through the Venturi contains bubbles. This paper reports computations of the pressure
¯uctuation due to the passage of a single bubble. The liquid is assumed inviscid and its velocity,
assumed irrotational, is computed by means of a boundary integral technique. The liquid velocity at the
entrance to the Venturi is assumed constant and uniform across the pipe, as is the pressure at the outlet.
The bubble is initially far upstream of the Venturi and moves with velocity equal to that of the liquid.
Buoyancy is neglected. If the bubble is su�ciently small that interactions with the Venturi walls may be
neglected, a simple one-dimensional model for the bubble velocity is in good agreement with the full
boundary integral computations. The di�erential pressure (taken to be positive) decreases when the
bubble enters the converging section of the Venturi, and then increases to a value higher than for liquid
alone as the bubble passes the pressure measurement position within the throat. The changes can be
estimated using the one-dimensional model, if the bubble is small. The bubble is initially spherical (due
to surface tension) but is perturbed by the low pressure within the Venturi throat. In the absence of
viscosity, the bubble oscillates after leaving the Venturi. The quadrupole oscillations of the bubble are
similar in frequency to those of a bubble in unbounded ¯uid; the frequency of the monopole oscillations
is modi®ed by the presence of the pipe walls. Numerical results for the frequency of monopole
oscillations of a bubble in a uniform tube of ®nite length are in good agreement with analytic
predictions, as is the computed drift of the oscillating bubble. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The use of a Venturi for ¯ow measurement at high Reynolds numbers is standard
practice in single phase ¯ow. Multiphase ¯ows are harder to measure, since the mean
density of the ¯owing mixture depends upon the volume fraction of the various phases,
which are likely to be moving relative to one another. Nevertheless the measured
di�erential pressure between the entrance and throat of a Venturi can lead to ¯ow rate
estimates when combined with information from other sources. Recent practical devices
are reviewed by Thorn et al. (1997) and some theoretical background is provided by
Boyer and Lemonnier (1996).
The di�erential pressure within a Venturi will ¯uctuate due to the passage of bubbles: the

main aim of this paper is to study the ¯uctuation caused by the passage of a single deformable
gas bubble when the bubble and the surrounding inviscid, incompressible liquid ¯ow through a
Venturi. The bubble is assumed to move along the axis of the Venturi so that the problem is
axisymmetric, and the liquid velocity is assumed irrotational. The bubble motion and the
potential velocity ®eld in the surrounding liquid will be computed by means of a boundary
integral technique. Results so obtained will be compared with those predicted by a simpler,
one-dimensional model that neglects interactions between the bubble and the walls of the
Venturi. This will prepare the way for simpler computations of the motion of undeformable
bubbles away from the axis of the Venturi (Soubiran and Sherwood, 2000).
Buoyancy forces will be neglected, since in the absence of viscous drag a bubble would have

no steady rate of rise. Although drag could be estimated from the viscous dissipation in the
potential ¯ow ®eld around the bubble (Batchelor, 1973, p. 368), such a calculation would
neglect the contribution to dissipation from the boundary layers at the rigid walls of the pipe.
The bubble is assumed to contain an ideal, isothermal gas. Realistic ¯ow rates are su�ciently
high (see Section 3), that it might be more appropriate to assume adiabatic deformation for all
but the smallest bubbles. A few simulations of bubbles under adiabatic conditions were
performed, but are not presented here: results were qualitatively the same as for an isothermal
gas. The pressure within the gas is always greater than zero. However, negative pressures might
occur in the liquid if the ambient pressure is su�ciently small: the possibility of cavitation was
ignored.
In the petroleum industry, the ¯ow to be measured might consist of oil together with gas

that has come out of solution as the oil ¯ows up a well towards the surface. Further gas might
come out of solution as the mixture enters the low pressure region in the Venturi throat. This
was neglected. The change in pressure within a Venturi is typically small compared to the
hydrostatic pressure change corresponding to the vertical height of a 1 km well.
Realistic multiphase ¯ows may well contain a high volume fraction of gas, rather than

solitary bubbles, and ¯ow rates may be high. Such ¯ows are usually far from steady, and
turbulent churn ¯ow is likely. The results obtained here are therefore somewhat removed from
realistic ¯ows.
We start in Section 2 by considering two simple one-dimensional models which will help our

understanding of the full potential ¯ow computations. Order of magnitude estimates for typical
¯ow rates are given in Section 3. Details of the boundary integral scheme are discussed in
Section 4 and numerical results presented in Section 5. In Appendix A, an analysis of the
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resonant frequency of oscillation of a small bubble in a pipe is used to check the accuracy of
the full potential ¯ow computations.

2. Simple one-dimensional models

2.1. A bubble in a Venturi

Kuo and Wallis (1988) studied the motion of individual bubbles through a nozzle, and
compared experimental results against the predictions of a one-dimensional model which
included steady and unsteady viscous drag, added mass (acceleration reaction), buoyancy and
pressure forces acting on the bubble. A similar analysis was presented by Kowe et al. (1988)
for the case of steady viscous drag. We shall ignore buoyancy and viscous forces, and consider
a simpli®ed version of the model in which a bubble moves under the action of the pressure and
added mass.
Figs. 1 and 2 show a Venturi with inlet diameter 2 ~a: we non-dimensionalise all lengths by ~a:

The pipe has a radius

Rp �

8>>>>><>>>>>:

1 0 < x < x1

1ÿ �xÿx 1 ��1ÿb�
x 2ÿx 1

x1 < x < x2

b x2 < x < x3

1ÿ �x 4ÿx��1ÿb�
x 4ÿx 3

x3 < x < x4

1 x4 < x < x5

, �1�

where b is the non-dimensional radius of the Venturi throat, and x is distance along the axis.
We assume that the liquid velocity is uniform across the cross-section, and equal to ~U at the
entrance. We non-dimensionalise all velocities by ~U, so that the dimensionless liquid velocity at
the entrance is ul � 1: Time is non-dimensionalised by ~a= ~U, densities by ~rl and pressures by
~rl

~U
2
:

We consider an incompressible, spherical gas bubble of radius R0 and density rg moving
along the axis of the pipe. The forces acting on a bubble (in unbounded liquid) are discussed
by Batchelor (1973, p. 409) and Auton et al. (1988). The lift force is zero in irrotational ¯ow,
and we neglect drag. If the centre of the bubble is at xb�t�, the equation of motion for the

Fig. 1. The Venturi, shown with a bubble on the centreline, and with a series of pressure tappings p1, . . . ,p7 at which
the wall pressure is computed.
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bubble becomes

4
3pR

3
0rg

d 2x b

dt 2
� 4

3pR
3
0rl

�
Dlul

Dt
ÿ Cm

�
d2xb

dt2
ÿ Dlul

Dt

��
, �2�

where Cm is the added mass coe�cient and Dlul=Dt � @ul=@t� ul@ul=@x evaluated at the
instantaneous position xb�t� of the bubble. The left-hand side of Eq. (2) represents the mass±
acceleration of the bubble. The ®rst term on the right-hand side represents the force due to the
pressure gradient within the liquid (in the absence of the bubble); the second term is the
acceleration reaction (added mass force) due to acceleration of the bubble relative to the liquid.
The liquid velocity is assumed steady and we now set the gas density rg � 0: The governing
equation becomes

d2xb

dt2
�
�
1� Cm

Cm

�
ul
@ul

@x
�3�

with

xb � 1, vb � dxb

dt
� 1 at t � 0

as initial conditions for a bubble starting at xb � 1 with velocity vb equal to the liquid velocity.
If we assume that the bubble is small compared to the radius of the pipe, then Cm � 1=2 is
constant, and integrating Eq. (3) leads to

v2b �
�

dxb

dt

�2

�
�
1� Cm

Cm

�
u2

l �xb� ÿ 1

Cm

: �4�

Note that the velocity of the bubble can be expressed in terms of the local liquid velocity
ul�xb�: when Cm is constant the inertia of the bubble is a ®xed fraction of the inertia of the
liquid it has replaced. If we assume that ¯ow is uniform across the cross-section of the pipe,
then

ul � Rÿ2p : �5�

Fig. 2. Schematic of the one-dimensional slug model considered in Section 2.2.
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Fig. 3 shows the predicted velocity of a bubble in a Venturi in which the converging section,
throat and diverging section all have length 1, for various values of the non-dimensional throat
radius b: We see that in the converging section the bubble accelerates faster than the liquid
since the added mass of the bubble is only half the mass of the liquid it has replaced. Thus,
when b � 0:5 the unperturbed liquid velocity in the throat is ul � 4:0, whereas the bubble
velocity is vb � 6:78: Eq. (4) can be integrated numerically in order to ®nd the bubble position
xb�t� and results of this simple model will be compared against the potential ¯ow computations
in Section 5. Although one could extend the model to allow the bubble to expand in the low-
pressure region of the throat, the radial growth of the bubble would be a�ected by the
presence of the pipe walls, as discussed in Appendix A in the context of monopole oscillations
of a bubble in a pipe. Such an extension will not be attempted here.

2.2. A one-dimensional slug model

The full numerical computations of Section 5 predict that, after passing through the Venturi,
the bubble will oscillate with a frequency which increases as the bubble moves towards the exit
of the Venturi. The reasons for this can be most easily demonstrated by means of a one-
dimensional slug model. Fig. 2 shows a single slug of gas sandwiched between two liquid slugs
passing through a Venturi. The velocity is assumed uniform across the cross-section of the
pipe, so that all interfaces remain plane and interfacial tension can be ignored. The gas density
rg � 0 so that the velocity of sound is in®nite within the gas, which is therefore at uniform
pressure pg: The liquid is incompressible with non-dimensional density rl � 1: The velocity U �
1 at the entrance is constant, as is the pressure pexit at the exit. These boundary conditions are
intended to represent laboratory experiments in which ¯uid is supplied at constant ¯ow rate by

Fig. 3. The velocity vb of a bubble, predicted by the one-dimensional model of Section 2.1, in a Venturi with
dimensions x 1 � 4:05, and converging, throat and diverging sections all of length 1.0. Added mass coe�cient
Cm � 0:5: Curves correspond to (a) b � 0:5, (b) b � 0:6, (c) b � 0:7, (d) b � 0:8, (e) b � 0:9:
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powerful pumps, and ¯uid exits from the Venturi at atmospheric pressure. Alternatively a
choke might be ®tted at the exit in order to raise the pressure within the apparatus. In this case
any ¯uctuations in ¯ow due to the presence of a bubble will lead to ¯uctuations in the pressure
drop across the choke and (possibly) changes in the ¯ow rates supplied by a pump. If the
compliances of the choke and pump are known, such e�ects could be incorporated. However,
here we shall keep to the simpler boundary conditions given above.
Initially the gas is far upstream of the Venturi and everything travels at velocity U (apart

from the liquid within the Venturi). Similarly the pressure everywhere (apart from the Venturi)
is pexit: Once the gas enters the low pressure region within the Venturi, it expands and the
system is perturbed. The system subsequently behaves as an oscillator, with inertia provided by
the liquid between the gas and the exit and with the restoring force provided by the
compressible gas.
The geometry of the Venturi is given as before by Eq. (1) and the non-dimensional cross-

sectional area of the pipe is A�x� � pR2
p : In the computations presented here we assume that

the converging, throat and diverging sections of the Venturi all have length 1 and we take b �
1=2:
The gas slug occupies the region between x l and x r and has volume

V �
�x r

x l

A�x� dx: �6�

We assume isothermal deformation of the gas. The initial pressure, length and volume of the
gas slug are pexit, L and V0 � Lp, and at time t the pressure within the gas is

pg � V0pexit

V
� Lpexit

x r ÿ x l
: �7�

There are two slugs of liquid. The ®rst occupies the region x < x l and moves with constant
volume ¯ow rate q1 � p, so that the velocity of the left-hand end of the gas slug is

dx l

dt
� q1

A�x l� : �8�

The second liquid slug occupies the region between x r and the exit x5: The volume ¯ow rate of
the slug is q2�t� and the liquid velocity u�x� � q2=A�x�, so that

dx r

dt
� q2�t�

A�x r � : �9�

We de®ne a velocity potential

f �
�x
x 5

q2�t�
A�x� dx: �10�

The unsteady version of Bernoulli's equation leads to
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dq2
dt

�x r

x 5

dx

A�x� �
q2
2

2A2�x5� ÿ
q2
2

2A2�x r � �
pexit

rl

ÿ pg

rl

�11�

with q2 � q1 initially. Thus we have four equations, Eqs. (7)±(9) and (11), for x l, x r, q2�t� and
pg:
We consider a Venturi with dimensions x1�4, x2�5, x3�6, x4�7, x5�11: The equations

were solved using the NAG routine D02CJF, a variable-order, variable-step Adams method
and integration was stopped when the leading edge x r of the gas slug reached the exit x5 � 11:
The leading edge of the gas slug was initially at x r � 3, unit distance away from the entrance
to the Venturi at x1 � 4: Therefore, deviations from steady ¯ow commenced at time t � 1:
Initially the Venturi is ®lled with liquid and ¯ow is steady. The non-dimensional pressure

di�erence Dpl between the entrance and throat of the Venturi is given by Bernoulli's theorem

Dpl � bÿ4 ÿ 1

2
, �12�

so that Dpl � 7:5 when b � 1=2: If Dpl is small compared to the initial pressure pexit within the
gas, the perturbed motion will be linear to a ®rst approximation. Fig. 4 shows the pressure pg

within the gas slug as a function of time, with ambient pressure pexit � 103: The two curves
correspond to slugs with initial length L � 1:0 and L � 0:2: The corresponding volumetric ¯ow
rates q2�t� are shown in Fig. 5.
Note that the frequency of the oscillations seen in Figs. 4 and 5 increases with time, since

the inertia of the liquid between the slug and the exit decreases. The Venturi serves to excite

Fig. 4. The pressure pg within the gas slug, as a function of time, for slugs with initial length (a) L = 1.0, (b) L =
0.2. Fixed exit pressure pexit � 1000: The envelopes (c) are proportional to �tÿ t0�1=4, where t0 is the time at which
the slugs reach the exit.
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the oscillation, but plays little role once the gas has reached the uniform pipe beyond the
constriction. The oscillations can therefore be analyzed by considering motion within a pipe of
uniform cross-section with constant pressure pexit applied at the exit x5, and with a piston at
x l � x5 ÿU�t0 ÿ t� ÿ L advancing towards the exit with constant velocity U. We suppose that
there is a slug of gas in the region x l < x < x r adjacent to the piston, and that liquid of density
rl occupies the remaining part of the tube x r < x < xexit: Thus, the geometry is similar to that
shown in Fig. 2, but the pipe is now straight. Initially, the pressure is pexit everywhere, the gas
slug has length L, and piston, gas and liquid all move with velocity U, so that the gas slug will
reach the exit x5 at time t � t0: The equation of motion for the liquid in x r < x < x5, Eq. (11),
simpli®es to

�xrrl�x5 ÿ x r � � pg ÿ pexit, �13�
where a dot represents di�erentiation with respect to time t. We look for a perturbation to
steady motion in which the length L� y of the gas slug oscillates slightly about L, and set

x r � x5 ÿ Ll � y, �14�
where Ll is the instantaneous (unperturbed) length of the oscillating column of liquid between
the gas and the open end of the tube at x5: The equation of motion, (13), becomes

�yrl�Ll ÿ y� � ÿypexit

L
� pexit

�
y

L

�2

� . . . , �15�

with jyj � L: If U � 0 the unperturbed length Ll of the oscillating column of liquid is

Fig. 5. The volume ¯ow rate q2�t� within the liquid occupying the region x r < x < x 5 for slugs with initial length (a)
L = 1.0, (b) L = 0.2. Fixed exit pressure pexit � 1000 (as in Fig. 4).
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constant, and after neglecting terms O�y=L�2 in Eq. (15) we ®nd solutions of the form

y � a sin f �16�
where _f � �pexit=�LLlrl��1=2 and a is constant. If U 6�0 is su�ciently small such that Ll varies
little over one period of oscillation, we may still look for solutions of the form (16), with a
varying slowly compared to f: Setting Ll � U�t0 ÿ t�, the equation of motion Eq. (15) becomesh�

�aÿ a _f
2
�

sin f�
ÿ
2 _a _f� a �f

�
cos f

i�
U�t0 ÿ t� ÿ y

� � ÿpexita

rlL
sin f�O�a=L�2: �17�

Equating terms in sin f, to leading order we obtain

_f �
�

pexit

LrlU�t0 ÿ t�
�1=2

�18�

and the frequency of the oscillation increases as the length of the liquid slug decreases.
Equating terms in cos f to leading order gives

2 _a _f� a �f � 0 �19�
and hence

a2 _f � constant: �20�
As the frequency of oscillation _f increases, the amplitude a decreases as �t0 ÿ t�1=4: The
dominant term of the perturbation velocity is _y ' a _f cos f and the amplitude of the velocity
oscillations increases as �t0 ÿ t�ÿ1=4: Curves proportional to �t0 ÿ t�1=4 are shown in Fig. 4, and
are good ®ts to the envelopes of the oscillations.
If the ambient pressure is reduced to pexit � 10, the oscillations of pressure within the gas

become non-linear, with a much lower frequency and larger amplitude, as shown in Fig. 6.
A gas bubble occupies only part of the pipe, rather than the entire cross-section occupied by

the slug, and is subject to interfacial tension. Nevertheless, calculations of bubble oscillations
discussed in Section 5 exhibit similar features to the simple one-dimensional slug model
presented above.
The model presented above could be extended in various ways. Thus one can study the

motion of a train of N gas slugs by solving the corresponding 4N governing equations for the
pressure, left- and right-hand coordinates of each gas slug and for the volume ¯ow rates qi of
the intervening slugs of liquid. The resulting longitudinal oscillations are similar to those of a
linear array of point masses connected by non-linear springs. The curvature of the interfaces
could be allowed to vary, perhaps as a function of velocity, so that e�ects of surface tension
could be included. We shall not discuss such extensions here.

3. Order of magnitude estimates for non-dimensional quantities

The range of ¯ow rates which might be encountered when metering multiphase ¯ow is large:
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here we consider a dimensional ¯ow rate ~ql � 10 m3 hÿ1 such as might be achieved in a
laboratory. If the pipe has radius ~a � 25 mm, the liquid velocity is ~U � 1:4 m sÿ1. The liquid
density is ~rl � 103 kg mÿ3, and a typical dynamic pressure is ~rl

~U
2 � 0:02 bar. If the liquid is

water with viscosity ~m � 10ÿ3 Pa s, the Reynolds number is Re � 2 ~a ~U ~rl= ~m� 7� 104: Thus, as
stated above we expect the real ¯ow to be turbulent. A typical interfacial tension for a clean
air/water interface is ~s � 0:072 N mÿ1, so that the non-dimensional interfacial tension is

s � ~s

~a ~rl
~U
2
� 1:5� 10ÿ3: �21�

Note that s de®ned by Eq. (21) is an inverse Weber number based on the radius of the pipe
(rather than on that of the bubble).
A typical outlet pressure in the laboratory is 1 bar, and a typical inlet pressure is 2 bar. If

we ignore interfacial tension, a typical non-dimensional initial bubble pressure is therefore p
g
0 �

100: These pressures are large compared to the change in pressure within the throat of the
Venturi, so that e�ects of bubble compressibility are small. More particularly, we would not
expect to see the rapid growth of cavitation bubbles that occurs in cavitation susceptibility
meters (Oldenziel, 1982). At a temperature 288 K the velocity of sound in air at atmospheric
pressure is 340 m sÿ1 � ~U and the density of air ~rg � 1:2 kg mÿ3 � ~rl: We therefore ignore
the inertia of the gas within the bubble, which we shall assume to be at uniform pressure.
We now consider the magnitude of the errors introduced by the neglect of gravity. In

multiphase ¯owmeters the Venturi axis is usually vertical (Thorn et al., 1997) in order to
maintain axisymmetry. The rise velocity of a Taylor bubble which spans a tube of diameter 2a

Fig. 6. As for Fig. 4, with exit pressure pexit � 10: Initial gas slug length (a) L = 1.0, (b) L = 0.5, (c) L = 0.2, (d)
L = 0.1.

J.D. Sherwood / International Journal of Multiphase Flow 26 (2000) 2005±20472014



is approximately 0:48�ag�1=2 (Batchelor, 1973, p. 478) where g is the acceleration due to gravity.
In a pipe of diameter 50 mm, this suggests a typical slip velocity 0.24 m sÿ1. This is also the
rate of rise of a bubble of radius approximately 0.5 mm in clean water, as predicted by the
Levich formula and observed experimentally (Duineveld, 1995). The corresponding non-
dimensional slip velocity is 0.2. Although this is not particularly small compared to the liquid
velocity, it is small enough to justify an initial study of bubble motion in the absence of
buoyancy.
A typical time taken for a bubble to pass through a Venturi of length 0.2 m will be of the

order 0.1 s (the velocity within the Venturi is higher than that within the straight pipe). The
thermal di�usivity of air at atmospheric pressure is typically 2� 10ÿ5 m2 sÿ1, so that thermal
conduction will have time to equilibrate the temperature only within bubbles substantially
smaller than 1 mm. In a turbulent churn-¯ow, mixing and heat transfer will be enhanced.
Kuo and Wallis (1988) performed experiments in which bubbles passed through a slot-

shaped (as opposed to axisymmetric) nozzle, with an inlet velocity typically 0.8 m sÿ1. The
bubble diameters were typically 2 mm, compared to a throat cross-section 26 mm � 51 mm.
These small bubbles survived their passage through the nozzle. Kuo and Wallis compared the
bubble motion to the predictions of a one-dimensional model similar to that of Section 2.1,
with additional viscous drag terms included. Agreement was good. The added mass force was
important near the throat of the nozzle. Elsewhere drag and buoyancy forces dominated, as is
inevitable in uniform sections of the pipe within which there is no acceleration. Fluctuations in
di�erential pressure between the entrance and throat of the nozzle Ð not discussed by Kuo
and Wallis Ð would have been small.

4. Boundary integral technique for potential ¯ow

4.1. Green's identity

The liquid ¯ow is assumed irrotational, so that the liquid velocity u may be represented by a
potential f such that

u � rf �22�
where

r 2f � 0 �23�
because of incompressibility. The potential f is obtained by solving the Laplace equation (23)
at each time step by means of boundary integrals.
There have been a large number of numerical studies of bubble motion in potential ¯ow

based upon boundary integral techniques. Many of these concern cavitation bubbles, but gas
bubbles were studied by Best and Kucera (1992), who included gravity but took interfacial
tension to be zero. Other studies of gas bubbles rising under gravity include those of Lundgren
and Mansour (1991), Boulton-Stone and Blake (1993) and Boulton-Stone et al. (1995). The
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numerical method used here is based largely upon that described by Best and Kucera (1992)
and Oguz and Prosperetti (1989, 1993).
To determine the liquid velocity u it is necessary to solve the Laplace equation (23) in the

liquid domain O bounded by the surface S with outward facing normal n: We shall adopt the
method of solution based upon Green's second identity which leads to the integral equation for
f in the form

cf�x� �
�
S

�
~f
@f
@n
ÿ f

@ ~f
@n

�
dS, �24�

where ~f is the fundamental solution; c � 1 for all points x within O, c � 1=2 if x lies on
smooth portions of the boundary S, and c � a=2p if x lies at a corner of S at which the
interior angle is a (Jaswon and Symm, 1977).

4.2. Discretisation of the boundary

Eq. (24) may be regarded as an integral equation. The boundary S of the liquid domain O
consists of (i) the walls of the pipe, where we assume zero liquid velocity normal to the surface
i.e. n � rf � @f=@n � 0, (ii) the entrance to the pipe, on which we prescribe a non-dimensional
normal velocity U � 1, (iii) the exit, on which we impose a constant pressure p � pexit, as a
result of which f is known, and (iv) the surface of the bubble, where the pressure and
consequently f are known.
The wall of the pipe is a simple, piecewise linear boundary and if we were prepared to take

extra care when treating corners it would be possible to handle this boundary exactly.
However, the liquid velocity u � rf will be in®nite at the corners C and D (Fig. 1). It was
therefore decided to treat the wall as a smooth surface in similar fashion to the surface of the
bubble. Typically 130 points were distributed along the wall and the axial and radial
coordinates were interpolated by means of cubic splines (Press et al., 1992). Following Oguz
and Prosperetti (1993), the rectilinear distance between points was used as the interpolating
variable, rather than the curvilinear distance used by Best and Kucera (1992). The splines
smooth out the corners over a lengthscale comparable to the discretisation used to represent
the wall, so removing singularities at the corners. The entrance and exit to the pipe were
represented by 11 points spaced regularly between the axis and the pipe wall. The bubble
surface was usually described by 21 points, the ®rst and last of which were on the pipe axis. If
these were interpolated by cubic splines the computed curvature was found to be inaccurate,
particularly at the points on the axis. Quintic splines were therefore used.
We assume that the unknown quantities �f over the entrance and walls of the pipe; nrf on

the surface of the bubble and pipe exit) vary linearly with the spline parameter based on the
linear distance between adjacent points.
When evaluating the surface integral in Eq. (24) all integrals in the y direction were

performed analytically in terms of complete elliptic integrals, for which e�cient polynomial
representations are available (Abramowitz and Stegun, 1964). The resulting line integrals were
evaluated by means of a six-point Gauss±Legendre quadrature. Logarithmic terms were
integrated by a procedure equivalent to that described by Oguz and Prosperetti (1993, Eq. (31).
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In all the results presented here the dimensions of the Venturi were assumed to be
x1 � x5 ÿ x4 � 4:05, x2ÿx1�x3ÿx2�x4ÿx3�1:0: A more realistic Venturi for single phase
¯ow would have a longer diverging section after the throat (British Standards Institution,
1997). There has been little discussion of optimal Venturi shapes for multiphase ¯ow
measurement.

4.3. Initial conditions

The Laplace equation was ®rst solved in the absence of any bubble, assuming that the
velocity normal to both the exit and entrance was U. The resulting Neumann problem can be
solved only to within an arbitrary constant: this indeterminacy was removed by taking the
potential at one point of the entrance to be zero. The potential f was allowed to vary over the
rest of the entrance, but in practice this was positioned su�ciently far upstream that the
variation of f across the entrance was negligible. The solution of the Neumann problem gives
us an initial value for f at the pipe exit.
The bubble was assumed to be initially spherical with centre at x � 1, su�ciently far

upstream of the Venturi that the velocity potential could be taken to be f � Ux: This gives the
initial condition for f on the surface of a bubble moving at the same velocity U as the
surrounding liquid.
In a real vertical Venturi the gas bubbles rise relative to the liquid because of buoyancy and

in the computations the bubble could be given a di�erent initial velocity. This was attempted,
using the solution for potential ¯ow around a sphere in unbounded liquid to give the initial
potential on the surface of the bubble. The spherical bubble was not in equilibrium with the
pressure over its surface; as a result the bubble not only translated, but also oscillated in shape.
Such oscillations were reduced by taking the initial potential and bubble shape to be those of a
perturbed sphere (Moore, 1959). However, oscillations were not entirely eliminated, no doubt
because Moore considered bubbles in unbounded liquid, rather than within a pipe. We shall
not pursue this further: from now on the initial velocity of the bubble will be equal to the
velocity U of the surrounding liquid.
Initially the bubble is far upstream of the Venturi and the liquid surrounding the bubble is

at the exit pressure pexit: The bubble has radius R0 and initial volume

V0 � 4

3
pR3

0: �25�

The initial pressure within the bubble is

p
g
0 � pexit � 2s

R0
, �26�

where s is the non-dimensional interfacial tension.

4.4. Stepping forward in time

At the start of a time-step the potential f and pressure p are known over the surface of the
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bubble and over the exit. The tangential component of rf is therefore known, but the normal
component must be determined by solving the integral equation (24). The surface of the bubble
can then be translated, ready for the start of the next time step. The potential f on the surface
of the bubble and at the exit at the start of the next time-step are obtained via Bernoulli's
equation

@f
@t
� 1

2u
2 � p

rl
� C�t�, �27�

where u2 � u � u and C�t� is constant along streamlines. In irrotational ¯ow C�t� may be taken
to be the same on all streamlines: we choose C � pexit � 1

2U
2 so that the potential at the exit

remains constant in the absence of any disturbance to the ¯ow due to the presence of the
bubble.
Integration forward in time was performed by a second-order Runge±Kutta scheme. Once

the new position of the bubble surface has been determined, the new volume of the bubble and
the corresponding gas pressure pg within the bubble are computed. If the interfacial tension is
s, and R1, R2 are the principal radii of curvature of the surface, then the liquid pressure just
outside the bubble is

p � pg ÿ s
ÿ
Rÿ11 � Rÿ12

�
: �28�

A short wavelength, sawtooth instability has been encountered by many authors and is thought
to be a numerical rather than physical instability. It was ®rst reported by Longuet-Higgins and
Cokelet (1976), who suppressed it by means of a smoothing procedure. Lundgren and
Mansour (1988) smoothed it by means of a di�usion step

@c
@t
� ÿl@

4c
@s4

, �29�

where c is the quantity to be smoothed, and l controls the degree of smoothing. The
smoothed value of c is

c 0j � cj ÿ
lDt

�Ds�4
�
cj�2 ÿ 4cj�1 � 6cj ÿ 4cjÿ1 � cjÿ2

�
, �30�

where Ds is the distance between grid points, and Dt is the length of the di�usion time step.
Lundgren and Mansour took l1 � lDt=�Ds�4 � 0:01: If l1 � 1=16, Eq. (30) is equivalent to the
®ve-point formula of Longuet-Higgins and Cokelet (1976). The various instabilities are
discussed by Dold (1992). In the results presented here the ®ve-point smoothing algorithm of
Longuet-Higgins and Cokelet (1976) was applied every 200 time steps. At each time step the
points representing the bubble were re-distributed in order to maintain an approximately even
spacing. The time step was typically chosen initially to be Dt � 10ÿ4 but was reduced by a
factor 5 when the bubble entered the Venturi.

4.5. Pressures

We evaluate all pressures in the liquid relative to the pressure pexit: Once the potential f has
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been obtained along the walls of the pipe, it is ®tted by splines and can be di�erentiated in
order to determine the liquid velocity at the wall. The time derivative @f=@t may be estimated
as a backward derivative using the value of f at the previous time step. The wall pressure p is
then determined by means of Bernoulli's equation, (27). In an experiment the wall pressure
would be measured at a series of pressure tappings: in the numerical computations the pressure
was computed at the start and end of the converging section (B and C in Fig. 1), at the start
and end of the diverging section (D and E in Fig. 1), at the midpoint of the Venturi throat,
and at non-dimensional distances 1 upstream of B and downstream of E. We identify these
pressures as p1, . . . , p7, as shown in Fig. 1. The entrance pressure pin was also noted.
If the bubble volume changes from V0 to V the (isothermal) gas pressure becomes

pg � p
g
0V0

V
�31�

� p
g
0 � pbub, �32�

where

pbub �M

�
1

V
ÿ 1

V0

�
�33�

is the perturbation to the gas pressure within the bubble and

M � p
g
0V0: �34�

In equilibrium, the radius R0 of a spherical bubble satis®es

pexit � 3M

4pR3
0

ÿ 2s
R0

, �35�

so that

dR0

dpexit

� ÿ
"

9M

4pR4
0

ÿ 2s
R2

0

#ÿ1
: �36�

We shall generally investigate values of s� 9M=8pR2
0 , so that interfacial tension plays little

role in determining the volume of the bubble as it passes through the Venturi. However, it will
play an important role in determining perturbations from a spherical shape.
The derivative dR0=dpexit in Eq. (36) is singular when s � 9M=8pR2

0 : The non-dimensional
frequency of small oscillations of a bubble in unbounded liquid is (e.g. Leighton, 1994, p. 183)

o0 � 1

R0

�
3p

g
0 ÿ

2s
R0

�1=2
: �37�

Thus we expect instability if M < 8pR2
0s=9: This corresponds to a negative ambient pressure

pexit < ÿ4s=�3R0�:
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4.6. Code validation

The Neumann problem in Section 4.3 was ®rst solved in order to determine f at the exit
in the absence of any bubble. The results can also be used to obtain the liquid velocity on
the centreline and wall, and the corresponding pressures. These are shown in Figs. 7 and 8
for the case b � 1=2: The velocity at the corners C and D of the Venturi throat is large
but ®nite: the singularity has been removed by the smoothing of the corners. The
volumetric ¯ow rate obtained by integrating the liquid velocity across the pipe section was
least accurate near these corners, but even here errors were less than 1%. Note that the
wall and centreline velocities di�er slightly even at the centre of this unrealistically short
Venturi.
If b � 1 the pipe is straight, and it is straightforward to check that the bubble translates

without deformation. The code can be used to predict the frequency of a monopole oscillation
of a bubble, and the numerical results are in good agreement with analytic predictions, as
discussed in Appendix A.
The code did not always run successfully. Thus, very small bubbles, which should be

stable, required small time steps and such bubbles had to travel many bubble diameters
in order to pass through the Venturi. Large bubbles proved to be unstable, particularly
when they came close to the wall. The success of simulations of a deforming droplet
(Tsai and Miksis, 1994) or capsule (Leyrat-Maurin and BartheÁ s-Biesel, 1994) at zero
Reynolds number may in part be because viscosity slows down the rate of approach to
the wall, thereby making the problem more stable. Although large gas slugs can

Fig. 7. The non-dimensional liquid velocity (a) at the wall, and (b) along the centerline. Curve (c) shows the non-
dimensional radius of the Venturi with b � 1=2:
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propagate steadily in a straight pipe at high Reynolds number, the behaviour of the ®lm
of liquid at the wall is generally thought to be governed by a balance between viscous
and gravitational forces, both of which have been neglected here. Udaykumar et al. (1997)
computed the motion of a droplet of low (but non-zero) viscosity through a constriction
at Reynolds number 50. They successfully followed the drop to larger deformations than
were achieved here, though their simulations also eventually failed, especially if the droplet
touched the walls of the Venturi.
Tests were performed to check that the chosen time step was su�ciently small. The

example of a Venturi with b � 0:9 and a bubble of radius R0 � 0:5 with interfacial tension
s � 0:1 will be discussed in detail in Section 5.1 (Figs. 10 and 14). For this case a
reduction of the time-step from 2� 10ÿ5 to 4� 10ÿ6 changed the position of the centre of
mass of the bubble at time t � 9 by less than 0.001. Similarly, we may change the number
of points used to represent the surface of the bubble, and we examine the case b � 0:8, R0

�0:5, s � 0:2, M � 100 considered in Section 5.3 (Fig. 21) for which the numerical code failed
shortly after time t � 7:5: Thus, resolution problems were worse than usual in this example.
The broken lines in Fig. 9 show bubbles represented by 21 points marked by open circles.
Solid lines indicate bubbles represented by 41 points. In both cases the time step was 2� 10ÿ5:
Only half of each axisymmetric bubble is shown, at times t = 5.0, 5.5, 6.0, 6.5 and 7.0. The
radial and axial scales are di�erent: results at these and other times will be shown in Fig. 21
with correct scaling. We see that di�erences between the two resolutions are small up to t �
5:5: By t � 6:0 discrepancies begin to occur, but the bubble is by now well past the throat of

Fig. 8. The non-dimensional pressure p, relative to the pressure pexit (a) along the wall, (b) along the centerline.
Throat radius b � 1=2, as in Fig. 7.
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the Venturi. The discrepancies eventually become large at t � 7:5 shortly before the code failed
(in both cases).

5. Results

5.1. Motion of a bubble in a Venturi with throat radius b � 0:9

The one-dimensional analysis of Section 2.1 assumed that the added mass of the bubble
remained constant. This is untrue in a Venturi, since the added mass of a sphere in a tube
depends upon the ratio of the diameter of the tube to that of the sphere (Smythe, 1961; Cai
and Wallis, 1992). In order to compare the results of the boundary integral computations with
those of the one-dimensional model, we ®rst consider a Venturi with throat radius b � 0:9, for
which the added mass of the bubble varies little between the entrance and the throat. The
choice b � 0:9 has the additional advantage of ensuring that the bubble deformation is small.
The Venturi considered in this paper is short and when b � 0:5 large bubbles deformed so
much on entering the rapidly converging section of the Venturi that the numerical scheme
failed. We shall restrict our attention to a limited range of the interfacial tension s: If s� 1,
the bubble deforms rapidly and breaks. If s� 1, the bubble stays approximately spherical, and
oscillations are largely suppressed.
We ®rst consider a bubble of radius R0 � 0:5 with surface tension s � 0:1, which although

Fig. 9. Computed bubble shapes for the case b � 0:8, R0 � 0:5, s � 0:2, M � 100 at times t = 5.0, [0.5], 7.0,
ÐÐÐ using 41 points to represent the bubble; � � �w� � � using 21 points. Further results for this case are shown,
correctly scaled, in Fig. 21.
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small is not as small as the typical experimental values estimated in Section 3. We take M �
100 corresponding to p

g
0 � 191: Fig. 10 shows a series of deformed bubble shapes caused by

passage through the Venturi and Fig. 11 shows a more detailed plot of the deformation. There
is a quadrupole oscillation with a period approximately 2. The frequency ~on of an nth order
spherical harmonic perturbation to a spherical bubble is given by Lamb (1932, p. 475):

~o2
n � �n� 1��nÿ 1��n� 2� ~s

~rl
~R
3

0

: �38�

Hence, for a quadrupole �n � 2� the non-dimensional frequency

o2 �
 
12s
R3

0

!1=2

, �39�

and the predicted period is 2p=o2 � 2:03, in good agreement with that observed in the
simulation. The disturbance velocity falls o� relatively rapidly away from a quadrupole, and it
is therefore not surprising that the frequency has hardly been a�ected by the presence of the
pipe walls.
Fig. 12 shows the pressure at the inlet and the change in pressure pbub (33) within the bubble.

When the bubble enters the Venturi then gas, rather than liquid, is being accelerated and the

Fig. 10. The deformation of a bubble with initial radius R0 � 0:5 as it passes through a Venturi with b � 0:9, at
times t � 1, [1], 9. M � 100, s � 0:1:

Fig. 11. Detail of Fig. 10, at times t � 6:75, [0.25], 9.0.
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pressure at the entrance decreases from its initial value 0 (relative to pexit). There is a
corresponding increase in the inlet pressure when the bubble leaves the Venturi.
In single-phase ¯ow the pressure at the centre of the Venturi is expected, by Eq. (12), to be

p4 � ÿ0:26 and we see in Fig. 12 that the perturbation pressure within the bubble
approximately attains this value. The monopole mode of oscillation of the compressible bubble
is also excited by passage through the Venturi. The frequency in unbounded liquid predicted
by Eq. (37) is o0 � 47:9 with a period 2p=o0 � 0:13: The frequency of oscillation seen in
Fig. 12 is lower and increases with time; this is reminiscent of results from the one-dimensional
slug model of Section 2.2. The predictions of this model for the change in pressure within a gas
slug of volume equal to that of a sphere of radius R0 � 0:5, at an exit pressure pexit � 191, are
shown in Fig. 13 for a Venturi with b � 0:9: Also shown is the change in pressure of the
bubble (as in Fig. 12). The frequencies and magnitudes of the perturbed pressures within the
slug and bubble are similar, though that in the bubble is modulated by other frequencies. In
Appendix A we discuss how the frequency of monopole oscillations of a bubble in a straight
pipe di�ers from that in unbounded liquid.
Fig. 14 shows the wall pressures p1, . . . , p7 at positions discussed in Section 4.5 and shown in

Fig. 1. We see that the wall pressure at any particular position changes little while the bubble
is upstream, since the pressure at the exit is held constant. The wall pressure subsequently
oscillates once the oscillating bubble has passed by. However, pressure di�erences are not
a�ected by this oscillation. In Fig. 15 we see the di�erential pressure Dp � p1 ÿ p4, both for the
example of Fig. 10 with s � 0:1, and for a second case in which s � 1:0: In both cases, Dp
decreases as the bubble enters the Venturi: it is easier to accelerate gas than liquid. There is
then an increase to a level which is higher than that for ¯ow of liquid alone. The reason for

Fig. 12. Pressures computed during the simulation of Fig. 10. (a) Entrance pressure pin, (b) change in bubble
pressure pbub: M � 100, s � 0:1, b � 0:9:
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Fig. 13. (a) The change in slug pressure computed by the one-dimensional model of Section 2.2, for a slug with

volume equal to that of a bubble of radius R0 � 0:5, with exit pressure p0 � 191:0: (b) Change in bubble pressure
pbub computed during the simulation of Fig. 10. s � 0:1, b � 0:9, M � 100, R0 � 0:5:

Fig. 14. Wall pressures computed during the simulation of Fig. 10. (a) p1, (b) p2, (c) p3, (d) p4 (the mid-point of the
throat), (e) p5, (f) p6, (g) p7:
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the re-bound of Dp is straightforward. At the centre of the Venturi the bubble is travelling
faster than the surrounding liquid. Consider a bubble travelling at constant velocity in a
straight pipe, as seen in the frame of reference moving with the bubble, so that the velocity
®eld is steady. The liquid velocity at the wall is higher in the neighbourhood of the bubble
than either up- or down-stream. This leads to a decrease in wall pressure near the bubble and
hence to an increase in Dp as the bubble passes the centre of the throat, where the wall
pressure is computed. There is no equivalent e�ect when the bubble passes the position
upstream of the throat at which the pressure is computed, as here the bubble has the same
velocity as the surrounding liquid. The ®ne details of the pressure pulse as the bubble passes
through the throat will depend upon the shape and velocity of the bubble, which are modi®ed
by changes in the interfacial tension and bubble compressibility.
Note that in Fig. 15 the di�erential pressure measured in the absence of the bubble is

Dpl � 0:273, rather than 0.262 as predicted by Eq. (12). The discrepancies between single phase
potential ¯ow computations and the results of one-dimensional models were discussed in
Section 4.6.
The results of Figs. 12±15 were plotted as functions of time t. In order to help interpret

them in terms of the position of the bubble, we show in Fig. 16 the position of the centre of
mass of the bubble as a function of time as seen by an observer moving with velocity u � 1
along the x direction. Also shown are the positions of the intersections of the bubble surface
with the centreline, at the front and back of the bubble. The oscillations in these latter curves
are caused by the quadrupole oscillation of the bubble. Also shown in Fig. 16 is the position
xb�t� of the centre of a spherical bubble as predicted by the one-dimensional model of Section
2.1, corresponding to Eqs. (4) and (5) with ul � Rÿ2p and added mass coe�cient Cm � 1=2:

Fig. 15. The di�erential pressure Dp in a simple Venturi with b � 0:9, during the passage of a bubble with initial
radius R0 � 0:5: Interfacial tension (a) s � 1:0; (b) s � 0:1: M � 100:
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When the oscillating bubble emerges from the Venturi, it has a lower velocity than the liquid.
This is perfectly possible in potential theory, though in reality viscous drag at the surface of
the bubble would ensure (in the absence of gravitational e�ects) that the bubble eventually
regains the velocity of the surrounding liquid. It is well established that self-propulsion of a
deformable body in an irrotational inviscid ¯uid can be achieved by changes of body shape
(Sa�man, 1967; Miloh and Galper, 1993; Galper and Miloh, 1995).

5.2. The e�ect of interfacial tension

We now consider the e�ect of raising the interfacial tension from s � 0:1 to s � 1:0, while
keeping all other variables constant �b � 0:9, M � 100, R0 � 0:5). A plot similar to Fig. 10
would show the bubble passing through the Venturi with almost no deformation. The position
of the bubble is shown as a function of time in Fig. 17(a). The bubble emerges from the
Venturi with the same velocity as that of the liquid.
The predictions of the one-dimensional model of Section 2.1 are shown in Fig. 17(b),

assuming ul � Rÿ2p and Cm � 1=2: Note that the full numerical computation predicts that the
bubble starts to accelerate sooner than predicted by the one-dimensional model. This is
because the irrotational liquid velocity ul on the centreline accelerates upstream of the
converging section, as seen in Fig. 7. The one-dimensional model, given by Eq. (4), can be
integrated using the irrotational velocity ul rather than the approximation of Eq. (5), and this
leads to curve (d) when Cm � 1=2: Taking Cm � 0:667, corresponding to a sphere of radius
R0 � 0:5 in a straight pipe (Smythe, 1961), we predict Fig. 17(c). The added mass of the sphere

Fig. 16. The position of the bubble of Fig. 10, as seen by an observer moving with constant velocity u � 1: (a)
Centre-of-mass of the bubble; (b) and (c) show the trailing and leading edges of the bubble on the pipe axis; (d) the
prediction of the one-dimemsional model of Section 2.1, with Cm � 1=2 and ul � Rÿ2p : M � 100, s � 0:1, b � 0:9:
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will increase within the throat, where the ratio of the bubble diameter to pipe diameter
increases to 0.555. Nevertheless this increase is too small to a�ect the agreement between the
full results and those of the one-dimensional model with Cm constant. Thus we have shown
that the simple one-dimensional model of Section 2.1 can predict the motion of the bubble, as
long as (i) the liquid velocity is obtained from a full solution of potential ¯ow, rather than by
assuming a uniform velocity across the cross-section, (ii) the e�ect of the pipe is considered
when choosing a value for the added mass coe�cient Cm, and (iii) the bubble remains
spherical. If the bubble is su�ciently small it will remain spherical due to surface tension, and
its added mass coe�cient will di�er little from the value Cm � 1=2 in unbounded ¯uid.
Fig. 18 shows the variation of the bubble volume as a function of time for the two cases s �

0:1 and s � 1:0: If the bubble remained spherical, Eq. (36) implies that at a pressure p
g
0 � 191

(corresponding to M � 100� the variation in s should make little di�erence to the radius of the
bubble. We see in Fig. 18 that this holds for the slow changes in pressure associated with
motion into the low pressure region at the throat of the Venturi. The main e�ect of an increase
in surface tension is to suppress the quadrupole oscillation, but this has the indirect e�ect of
suppressing any excitation of the monopole. Longuet-Higgins (1989a, 1989b) has shown that if
a bubble is deformed without change in volume, energy can be transferred from the higher
multipole deformations to excite a second-order (but potentially non-negligible) monopole
oscillation at a frequency twice that of the multipole. This is discussed further by Benjamin
(1989) and Longuet-Higgins (1989c, 1991). Previous work concerns bubbles in unbounded
¯uid; the e�ect of the pipe walls is unknown and possibly enhances the coupling.

Fig. 17. Results similar to Fig. 16, for interfacial tension s � 1:0: (a) Centre-of-mass of the bubble; (b) prediction of

the one-dimensional model of Section 2.1 with Cm � 1=2 and ul � Rÿ2p (c) one-dimensional model with Cm � 0:667
and inviscid potential potential ¯ow ul; (d) one-dimensional model with Cm � 1=2 and inviscid potential ¯ow ul:
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Fig. 18. The bubble volume V during passage through a Venturi with b � 0:9: Interfacial tension (a) s � 1:0; (b)
s � 0:1: M � 100: R0=0.5.

Fig. 19. The di�erential pressure Dp � p1 ÿ p4, for (a) b � 0:9; (b) b � 0:75; (c) b � 0:7: s � 1:0, M � 100, R0 � 0:5:
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5.3. The e�ect of Venturi throat diameter b

In Fig. 19 we see the di�erential pressure Dp � p1 ÿ p4 for a bubble of radius R0 � 0:5 with
M � 100 and with interfacial tension s � 1:0 passing through Venturis with b � 0:9, 0.75 and
0.7. As expected, the perturbation to the di�erential pressure increases as b decreases. Note
also that the bubble passes more quickly through the narrower Venturis.
When s � 1:0 the bubble did not survive its passage through a Venturi with throat radius

b � 0:6: Fig. 20 shows the case b � 0:8, s � 0:1: The bubble becomes elongated and snaps at
its centre. If surface tension is increased to s � 0:2, as shown in Fig. 21, the numerical scheme
is eventually unable to follow the distorted shape of the bubble. Udaykumar et al. (1997) used
a mixed Eulerian±Lagrangian code to compute the motion of a droplet through a constriction
at Reynolds number 50, and the distortion shown in Fig. 21 is similar to the early stages of
droplet breakup predicted in some cases by their computations once the drop has emerged
from the constriction.
Fig. 22 shows the change in bubble pressure, pbub, as given by Eq. (33). We see that when

b � 0:9 the Venturi is too weak to excite any signi®cant change in the volume of the bubble,
unlike the narrower Venturi with b � 0:7: Note the smoothly varying envelope which
modulates the pressure ¯uctuations within the bubble.

5.4. The e�ect of bubble compressibility and absolute pressure

When the ambient pressure is decreased, the change in pressure as the bubble passes through
the Venturi will have a greater e�ect on the bubble, i.e. the gas becomes more compressible.

Fig. 20. The deformation of a bubble with initial radius R0 � 0:5 as it passes through a Venturi with b � 0:8, at
times t � 2:0, [0.5], 5.5, 5.73. M � 100, s � 0:1:

Fig. 21. The deformation of a bubble with initial radius R0 � 0:5 as it passes through a Venturi with b � 0:8 at
times t � 3:5, [0.5], 7.5. M � 100, s � 0:2:
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Fig. 22. The perturbation pressure pbub within the bubble, as a function of time. s � 1:0: M � 100, R0 � 0:5: (a)
b � 0:9, (b) b � 0:7:

Fig. 23. The e�ect of changes in ambient pressure on the di�erential pressure Dp during the passage of a bubble.
Bubble radius R0 � 0:5, interfacial tension s � 1:0, Venturi throat radius b � 0:75: (a) pg

0V0 �M � 100, (b) M � 10,
(c) M � 1:0:
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Fig. 23 shows Dp when a bubble of radius R0 � 0:5 with interfacial tension s � 1:0 passes
through a Venturi with b � 0:75: When M � p

g
0V0 is decreased, the bubble becomes more

compressible and expands more when it enters the low-pressure region of the Venturi throat.
This increases the total volumetric ¯ow rate at the throat and tends to increase Dp:
Fig. 24 shows the perturbation pbub of Eq. (33), to the pressure within the bubbles of Fig. 23.

When M is large the bubble oscillates little. The oscillations grow in amplitude and decrease in
frequency as M decreases. Similar behaviour was seen in the one-dimensional slug model of
Section 2.2. When M � 1:0 the initial pressure within the bubble is p

g
0 � 1:91, and we see that

pg40 as t increases. The bubble is expanding without limit. This growth can be seen in Fig. 25,
which shows the deformation of the bubble as it passes through the Venturi. From Eq. (36) we

Fig. 24. The perturbation pressure pbub within bubbles with s � 1 passing through a Venturi with b � 0:75: (a)
M � 100, (b) M � 10, (c) M � 1:0:

Fig. 25. The deformation of a bubble with initial radius R0 � 0:5 as it passes through a Venturi with b � 0:75, at
times t � 3, [0.5], 6.5, 6.89. M � 1:0, s � 1:0:
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note that if the bubble were in unbounded liquid it would only have to grow in radius from 0.5
to 0.6 to become unstable, and then to grow without limit. The continued expansion of the
bubble in Fig. 25 is similar to critical ¯ow of a gas±liquid mixture in a Venturi (Muir and
Eichorn, 1963, 1967; Sandhu and Jameson, 1979). Wang and Brennen (1998) predict similar
behaviour when a bubbly ¯uid passes through a Venturi. Note, however, that in the
computation presented here the ®xed exit pressure pexit � ÿ2:09, given by Eq. (35), is negative
and hence unrealistic.

5.5. The e�ect of bubble radius R0

We now change the bubble radius R0 while holding the pressure constant. We present results
in which pg

0 � 200 is held ®xed, so that M � pg
0V0 varies as the bubble radius is changed. The

e�ect of surface tension will vary when the bubble size is changed and one might argue that
pg
0 ÿ 2s=R0 should be held constant, rather than pg

0: However, when s � 1:0 changes in s=R0

are small compared to p
g
0 and we neglect such e�ects.

Fig. 26 shows the di�erential pressure Dp generated by the passage of bubbles through a
Venturi with b � 0:5: As might be expected, larger bubbles create greater changes to Dp:
Motion of the bubble through such a narrow Venturi is rapid.
Estimates of the change in di�erential pressure Dp, due to the passage of the bubble, may be

obtained using the one-dimensional model of Section 2.1. If the bubble is small compared to
the throat radius we may take the added mass coe�cient to be Cm � 1

2 : Assuming uniform
¯ow (5) across the cross-section, the velocity of liquid at the centre of the throat is bÿ2

whereas by Eq. (4) the velocity of the bubble is vb � �3bÿ4 ÿ 2�1=2: In the frame in which the

Fig. 26. Variation of di�erential pressure Dp � p1 ÿ p4 as a function of bubble radius (a) R0 � 0:3, (b) R0 � 0:25, (c)
R0 � 0:2: b � 0:5, pg

0 � 200, s � 1:0:
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bubble is at rest, the liquid velocity within the throat is v0 � �3bÿ4 ÿ 2�1=2 ÿ bÿ2 far from the
bubble. It can be shown from the potential ¯ow analysis of Smythe (1961) that if the pipe is a
uniform cylinder of radius b and the bubble is a sphere of radius R0 � b, the velocity at the
wall in this frame changes from v0 far from the bubble to v0�1� 1:776�R0=b�3 � . . .� at points
on the wall closest to the bubble. The wall pressure consequently decreases by
1:776v20rl�R0=b�3 � . . . : We therefore expect that when the bubble passes the centre of the
Venturi, where the wall pressure p4 is computed, the non-dimensional di�erential pressure Dp
will increase to

Dp � Dpl � 1:776

hÿ
3bÿ4 ÿ 2

�1=2ÿbÿ2i2�R0

b

�3

, �40�

where the di�erential pressure Dpl in the absence of any bubble is given by Eq. (12). If R0 �
0:1 and b � 0:5, the numerical simulations indicate that Dp changes from Dpl � 7:566 to a
maximum 7.640 i.e. by 0.074, whereas Eq. (40) predicts a change 0.11.
If a force Fa � ÿ�4=3�pR3

0rlD1ul=Dt is applied to the bubble the one-dimensional force
balance, (2), predicts that the bubble moves with the liquid. If the bubble is small, the
di�erential pressure across the Venturi will be unchanged from that for a homogeneous liquid
(12). An applied force Fa leads to a di�erence between the pressures upstream and downstream
of the bubble of magnitude Fa=pR2

p (Cai and Wallis, 1992; Sherwood and Stone, 1997), where
Rp is the local radius of the pipe and where we have neglected any change in Rp over the small
lengthscale R0 of the bubble. Removing the force Fa will modify the non-dimensional
di�erential pressure by an amount �8=3�R3

0R
ÿ7
p dRp=dx: This change in Dp is maximum when

the bubble is just about to leave the converging section of the Venturi, when we expect the
di�erential pressure to be

Dp � Dpl ÿ 8R3
0

3b7

�
1ÿ b

x2 ÿ x1

�
: �41�

If R0 � 0:1, b � 0:5 and x2 ÿ x1 � 1 the numerical simulations predict that Dp is reduced by
0.122 to a minimum 7.444. The estimate (41) predicts a change 0.171. The potential ¯ow
velocity along the centreline varies more slowly than the approximation ul � Rÿ2p (Fig. 7), so
that Eq. (41) is based on an over-estimate of the extension rate just before the throat.

6. Concluding remarks

The computations predict that if the bubble oscillates on emerging from the Venturi, it also
emerges more slowly than the surrounding liquid. Such translation is consistent with analyses
by Sa�man (1967), Miloh and Galper (1993) and Galper and Miloh (1995), but it is not clear
why the bubble always emerges travelling more slowly than the liquid. In real life viscous drag
would eventually reduce the relative velocity to zero. Weak viscous e�ects at a gas±liquid
interface might be included in the manner discussed by Lundgren and Mansour (1988).
We have seen in Sections 5.1 and 5.2 that if the bubble is small and remains spherical the

one-dimensional model of Section 2.1 can be used to predict its motion. This model is
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su�ciently simple that it can be used to predict the motion of bubbles o� the axis of the
Venturi, and it can be extended to include drag: results will be reported elsewhere (Soubiran
and Sherwood, 2000).
The di�erential pressure Dp between the entrance to the Venturi and the throat is modi®ed,

not only when the bubble accelerates through the converging section of the Venturi, but also
when the pressure tapping in the throat detects liquid velocity ¯uctuations in the
neighbourhood of the bubble. Modern rigorous derivations of two-¯uid equations for dilute
bubbly ¯ows (e.g. Zhang and Prosperetti, 1994) include the e�ects of such ¯uctuations. The
results obtained in Section 5 indicate that the ¯uctuations give rise to a signi®cant contribution
to time-averaged changes in Dp due to the passage of bubbles.
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Appendix A. Frequency of bubble oscillation in a straight tube

A.1. Introduction

We consider small-amplitude oscillations of a gas-®lled bubble such that the bubble remains
spherical with radius R0 a function of time t. A bubble surrounded by unbounded
incompressible inviscid ¯uid was studied by Minnaert (1933), as discussed in the review by van
Wijngaarden (1972). In unbounded ¯uid the ¯uid velocity u is radial with urArÿ2, where r is
the distance from the bubble centre. The kinetic energy therefore decays as rÿ4 and is
integrable. If the oscillating bubble is in a liquid-®lled pipe, the liquid motion far from the
bubble will be along the axis of the pipe, and in the absence of compressibility the liquid
motion will not decay with distance from the bubble. The kinetic energy of the liquid therefore
depends upon the length of the pipe, as does the frequency of oscillation of the bubble. The
problem was recently studied by Oguz and Prosperetti (1998), but the analysis presented here is
somewhat di�erent and leads (after various approximations) to a closed expression for the
oscillation frequency which is independent of the cross-section of the pipe. In addition we
predict the slow drift of an oscillating bubble along the pipe axis. In Section A.5, the analytic
predictions for the period of oscillation and rate of drift are compared against numerical
simulations which use the boundary integral method described in Section 4. Agreement
between analysis and simulation is good, even when the bubble radius is comparable with that
of the tube. This forms a valuable check on the accuracy of the boundary integral
computations of Section 5.
In the main body of the paper the liquid was assumed incompressible. We now relax this

restriction, in part in order to show the conditions under which this assumption is reasonable,
and in part in order to build upon previous work by Morse and Ingard (1968), who discuss the
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Green's function for an oscillating point source in an in®nitely long duct ®lled with
compressible liquid. We consider here a ®nite duct and assume that the liquid compressibility is
su�ciently small that the pipe is short compared to the wavelength of the sound waves. One
end of the pipe is open and at constant pressure; at the other end we assume an arbitrary
admittance, so that this second end may be considered either to be open, or to be closed by a
rigid wall.
The liquid is at rest apart from oscillations generated by the bubble, so that U � 0 and the

non-dimensionalisations of Sections 2±5 are therefore inappropriate. The analysis will be
presented in dimensional form, and an alternative non-dimensionalisation will be adopted in
Section A.5 when comparing numerical results with the analysis.

A.2. The Green's function of Morse and Ingard

The Green's function go for a small amplitude (linear) sound wave generated by an
oscillating source in an unbounded liquid-®lled pipe is given by Morse and Ingard (1968,
Section 9.2 of their work). Their analysis can be extended in a straightforward way to include
pipes of ®nite length. We de®ne a function C such that the pressure p and liquid velocity u are

p � rl

@C
@t

, u � ÿrC: �A1�

C satis®es the wave equation

@ 2C
@t2
� c2r 2C, �A2�

where c is the velocity of sound.
We consider a point source placed at �x0, y0, z0� oscillating with time dependence exp�ÿiot�,

for which C may be written in the form C � go exp�ÿiot�, where go satis®es"
@ 2

@x 2
� @ 2

@y2
� @ 2

@z2
�
�
o
c

�2
#
go�x, y, xjx0, y0, z0� � ÿd�xÿ x0�d�yÿ y0�d�zÿ z0�: �A3�

The boundary conditions that go must satisfy take the form

u � n � bap

rlc
�A4�

where n is the outwards facing normal and ba is the admittance, with ba � 0 if the boundary is
a rigid wall and bÿ1a � 0 if the pressure is constant on the boundary. Thus,

@go
@n
� ikbago, k � o

c
: �A5�

Morse and Ingard considered a source within an in®nite pipe, and required that go decayed as
jxj41: We shall instead consider a ®nite pipe occupying the region x1RxRx2 (Fig. A1). The
admittance will be b1 at x � x1: We assume that the admittance at x � x2 is in®nite, so that
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the pressure there is constant and ¯uctuations in pressure are zero. The pipe walls are assumed
to be rigid.
We follow Morse and Ingard and look for an expansion of go of the form

go �
X
n

Fn�x�Cn�y, z� �A6�

where the eigenfunctions Cn�y, z� satisfy 
@ 2

@y2
� @ 2

@z2

!
Cn � ÿk2

nCn �A7�

together with the boundary condition (A5) on the pipe walls. The eigenvalues kn depend upon
the detailed cross-sectional geometry. The Cn are chosen so as to be mutually orthogonal, with�

S

CnCm dS � dnmSLn, �A8�

where S is the cross-sectional area of the pipe.
Inserting Eq. (A6) into the di�erential equation (A3), multiplying by Cn and integrating over

S leads to�
d2

dx 2
� k2

n

�
Fn � ÿ

Cn�y0, z0�
SLn

d�xÿ x0� �A9�

where

k2
n �

�
o
c

�2

ÿk2
n : �A10�

When the walls are rigid the eigenfunctions Cn are real, and the eigenvalues kn are real and
non-negative, with C0 � 1 and k0 � 0: For de®niteness, when o=c > kn we set

kn �
"�

o
c

�2

ÿk2
n

#1=2

: �A11�

There will be some value of n � N such that kn > o=c for n > N, and we set

Fig. A1. The bubble of radius R0 in a pipe of radius a.
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Kn �
"
k2
n ÿ

�
o
c

�2
#1=2

, n > N: �A12�

At this point in their analysis of an in®nite pipe, Morse and Ingard require that the Fn decay
as jxj41, and look for solutions of the form FnA exp�iknjxÿ x0j�: In our ®nite pipe, we
instead require

Fn � 0, x � x2 �A13a�

ikb1Fn � ÿdFn

dx
, x � x1 �A13b�

and hence we look for a function Fn of the form

Fn � An

��
kn
k
ÿ b1

�
eikn�xÿx 1 � �

�
kn
k
� b1

�
eÿikn�xÿx 1 �

�
, x1RxRx0 �A14a�

Fn � Bn

�
eikn�xÿx 2 � ÿ eÿikn�xÿx 2 �

�
, x0 < x < x2: �A14b�

Continuity at x � x0 requires

An

��
kn
k
ÿ b1

�
eikn�x 0ÿx 1 � �

�
kn
k
� b1

�
eÿikn�x 0ÿx 1 �

�
� Bn

�
eikn�x 0ÿx 2 � ÿ eÿikn�x 0ÿx 2 �

�
: �A15�

By Eq. (A9) there is a jump condition

�
F 0n
�x�

0

x ÿ
0

� ÿCn�y0, z0�
SLn

: �A16�

Hence

An � ÿ
�
kCn�y0, z0�
2iknSLn

�
eikn�x 0ÿx 2 � ÿ eÿikn�x 0ÿx 2 �ÿ

kn ÿ kb1
�
eikn�x 2ÿx 1 � � ÿkn � kb1

�
eÿikn�x 2ÿx 1 � �A17a�

and

Bn � ÿ
�
Cn�y0, z0�
2iknSLn

�ÿ
kn ÿ kb1

�
eikn�x 0ÿx 1 � � ÿkn � kb1

�
eÿikn�x 0ÿx 1 �ÿ

kn ÿ kb1
�
eikn�x 2ÿx 1 � � ÿkn � kb1

�
eÿikn�x 2ÿx 1 � : �A17b�

In x > x0
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go � i

S

X
n

Cn�y0, z0�Cn�y, z�
knLn

�
kn cos kn�x0 ÿ x1� ÿ ikb1 sin kn�x0 ÿ x1�

�
i sin kn�xÿ x2�

kn cos kn�x2 ÿ x1� ÿ ikb1 sin kn�x2 ÿ x1�

� ÿ 1

kS

�
cos k�x0 ÿ x1� ÿ ib1 sin k�x0 ÿ x1�

�
sin k�xÿ x2�

cos k�x2 ÿ x1� ÿ ib1 sin k�x2 ÿ x1�

ÿ 1

S

XN
n�1

Cn�y0, z0�Cn�y, z�
knLn

�
kn cos kn�x0 ÿ x1� ÿ ikb1 sin kn�x0 ÿ x1�

�
sin kn�xÿ x2�

kn cos kn�x2 ÿ x1� ÿ ikb1 sin kn�x2 ÿ x1�

ÿ 1

S

X1
n�N�1

Cn�y0, z0�Cn�y, z�
KnLn

�
Kn cosh Kn�x0 ÿ x1� ÿ kb1 sinh Kn�x0 ÿ x1�

�
sinh Kn�xÿ x2�

Kn cosh Kn�x2 ÿ x1� ÿ kb1 sinh Kn�x2 ÿ x1�
�A18�

We now expand the radial distance R � ��xÿ x0�2��yÿ y0�2��zÿ z0�2�1=2 from the source in
terms of the eigenfunctions Cn, using the expression (Morse and Ingard, 1968, p. 501)

lim
R40

�
1

4pR

�
� ÿjxÿ x0j

2S
� 1

2S

X1
n�1

Cn�y, z�Cn�y0, z0�
Lnkn

exp� ÿ knjxÿ x0j� �A19�

and we assume that the pipe is su�ciently long (compared to K ÿ1N�1� and the bubble su�ciently
far from the ends of the pipe, that

sinh Kn�x0 ÿ x1� sinh Kn�xÿ x2�
sinh Kn�x2 ÿ x1� 1ÿ 1

2 exp
�
Kn�x0 ÿ x�� for x > x0, nrN: �A20�

Combining Eqs. (A18) and (A19), we have

go ' 1

4pR
� jxÿ x0j

2S
ÿ 1

kS

�
cos k�x0 ÿ x1� ÿ ib1 sin k�x0 ÿ x1�

�
sin k�xÿ x2�

cos k�x2 ÿ x1� ÿ ib1 sin k�x2 ÿ x1�

ÿ 1

S

XN
n�1

Cn�y0, z0�Cn�y, z�
Ln

 �
kn cos kn�x0 ÿ x1� ÿ ikb1 sin kn�x0 ÿ x1�

�
sin kn�xÿ x2�

kn
�
kn cos kn�x2 ÿ x1� ÿ ikb1 sin kn�x2 ÿ x1�

�
� exp� ÿ knjxÿ x0j�

2kn

!
:

�A21�
Cases in which the denominators of the various terms in Eq. (A21) become zero correspond to
resonances of the entire column of compressible liquid. Thus, if b1 � 0 a ®rst resonance occurs
when x2 ÿ x1 � p=2k, whereas in the limit b141 we require x2 ÿ x1 � p=k:
We now let the compressibility of the liquid tend to zero so that such resonances are

avoided. As c41, so k40 and kn > o=c for all nr1, and hence N � 0: In this case, in the
limit R40, go takes the simple form
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go ' 1

4pR
� xÿ x0

2S
ÿ �xÿ x2�

S

 
1ÿ ib1k�x0 ÿ x1�
1ÿ ib1k�x2 ÿ x1�

!
R40, x > x0: �A22a�

independent of the detailed pipe shape; a similar analysis in x < x0 leads to

go ' 1

4pR
� x0 ÿ x

2S
ÿ �x0 ÿ x2�

S

 
1ÿ ib1k�xÿ x1�
1ÿ ib1k�x2 ÿ x1�

!
R40, x < x0: �A22b�

Su�ciently close to the source R2 � S, so that the dominant contribution to the liquid velocity
u � ÿrC is radial, with

ur0
eÿiot

4pR2
R2 � S: �A23�

The pressure in the limit R40 (and thus in the limit x4x0� can be obtained from either Eq.
(A22a) or Eq. (A22b) and is

p � ÿiorle
ÿiot

"
1

4pR
ÿ �x0 ÿ x2�

S

 
1ÿ ib1k�x0 ÿ x1�
1ÿ ib1k�x2 ÿ x1�

!#
: �A24�

If xÿ x0 � kÿ11 , then by Eq. (A18) in the limit k40, N � 0

go ' ÿ�xÿ x2�
S

 
1ÿ ib1k�x0 ÿ x1�
1ÿ ib1k�x2 ÿ x1�

!
xÿ x0 � kÿ11 �A25a�

and similarly in x < 0

go ' ÿ�x0 ÿ x2�
S

 
1ÿ ib1k�xÿ x1�
1ÿ ib1k�x2 ÿ x1�

!
x0 ÿ x� kÿ11 , �A25b�

so that the liquid velocity is uniform across the pipe cross-section far from the bubble.

A.3. The source strength of an oscillating bubble

We now have expressions for the pressure and velocity ®elds due to a point source, and must
determine the source strength of an oscillating bubble. We suppose that at equilibrium the
bubble contains gas at pressure p

g
0 and that the bubble radius R0 is small compared to the

distance of the bubble from the walls of the pipe. The interfacial tension between gas and
liquid is s: The oscillations of the bubble are assumed to be adiabatic, so that pgV gis constant,
where pg is the gas pressure, V the gas volume and g the ratio of the speci®c heats of the gas.
If we take g � 1 we recover the isothermal ideal gas law. The pressure at the open end (or
ends) of the pipe is assumed to be constant, and equal to p

g
0 ÿ 2s=R0, so that pressure

perturbations at the end of the pipe are zero. If the radius of the bubble changes from R0 to

Rb � R0

ÿ
1� deÿiot

�
�A26�
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the pressure within the gas bubble is

pg � p
g
0

ÿ
1ÿ 3gdeÿiot

�
�A27�

and the pressure in the liquid adjacent to the bubble is

p � pg
0 ÿ

2s
R0
ÿ deÿiot

�
3gp0 ÿ 2s

R0

�
: �A28�

The velocity at the surface of the bubble is

ur � ÿioR0deÿiot: �A29�
If we compare this with Eq. (A23) we see that the bubble is behaving as a source of strength

So � ÿ4pioR3
0d: �A30�

Equating the oscillatory component of pressure immediately outside the bubble (A28) to the
pressure (A24) generated by a point source, we obtain

o2 �
ÿ
3gpg

0 ÿ 2sRÿ10

�
R2

0rl

"
1ÿ 4pR0�x0 ÿ x2�

S

 
1ÿ ib1k�x0 ÿ x1�
1ÿ ib1k�x2 ÿ x1�

!#ÿ1
: �A31�

In general, energy is lost at a non-rigid barrier at x1, and the frequency, (A31) is complex,
corresponding to an oscillation that decays. If the pipe is open at x1, with b1 in®nite, then

o2 �
ÿ
3gpg

0 ÿ 2sRÿ10

�
R2

0rl

"
1� 4pR0�x2 ÿ x0�

S

�
x0 ÿ x1

x2 ÿ x1

�#ÿ1
: �A32�

If the pipe is closed by a rigid barrier, then b1 � 0 and

o2 �
ÿ
3gpg

0 ÿ 2sRÿ10

�
R2

0rl

�
1� 4pR0�x2 ÿ x0�

S

�ÿ1
, �A33�

which corresponds to Eq. (A32) in the limit x14 ÿ1: We see that the e�ect of the pipe is to
increase the inertia of the oscillating liquid, and thereby decrease the frequency of oscillation of
the bubble. It is perhaps worth re-stating that the analysis has assumed that the various length
scales R0 (bubble radius), a (typical length-scale for the pipe cross-section), L (pipe length) and
2p=k (wavelength of sound) satisfy R0 � a� L� 2p=k:
Oguz and Prosperetti (1998) compared their results against a one-dimensional slug model. If

a gas slug with initial volume V0 and pressure p
g
0 causes a single slug of liquid of length x2 ÿ

x0 to oscillate, an analysis similar to that in Section 2.2 predicts that frequency of oscillation o
satis®es

o2 � pg
0gS

V0rl�x2 ÿ x0� : �A34�
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This corresponds to Eq. (A33) in the limit x2 ÿ x0 � R0 when surface tension is negligible. If
two slugs of lengths x0 ÿ x1 and x2 ÿ x0 oscillate, then

o2 � pg
0gS�x2 ÿ x1�

V0rl�x2 ÿ x0��x0 ÿ x1� �A35�

which corresponds to Eq. (A32). The inertia of the system is dominated by that of the long
columns of liquid moving parallel to the axis of the pipe, rather than by the liquid which
moves radially in the vicinity of the bubble.

A.4. Drift

The liquid motion in the neighbourhood of the bubble can be obtained by taking the
gradient of either Eq. (A22a) or Eq. (A22b), and consists of a radial ¯ow, together with a
background axial drift of the liquid

Ud�x0� � Soeÿiot

2S
, b1 � 0 �A36a�

Ud�x0� � ÿ
�
x2 � x1 ÿ 2x0

x2 ÿ x1

�
Soeÿiot

2S
, b1 � 1 �A36b�

where the source strength So is given by Eq. (A30). From Eq. (A36b) we see that if the
con®guration is symmetric, the background drift Ud � 0, as expected. The pressure gradient in
the neighbourhood of the bubble similarly consists of the pressure gradient associated with
radial ¯ow around the bubble (which we shall ignore), together with a background gradient.

@pd

@x
� ÿ@Ud

@t
: �A37�

The bubble has zero mass, and we assume that it translates with a velocity vb which in general
will di�er from the velocity of the liquid. We assume that the bubble is su�ciently small that
the acceleration reaction (added mass force) acting on the bubble is as in unbounded liquid:
this assumption is reasonable since the far ®eld due to translation of the bubble is a dipole,
which decays more rapidly than the monopole due to the oscillation of the bubble volume. In
the absence of gravity the force balance on the bubble is given by Batchelor (1973, p. 455):

0 � 4pR3
b

3

dUd

dt
� 1

2

d

dt

�
4pR3

b

3
�Ud ÿ vb�

�
�A38�

so that

dvb

dt
� 3

dUd

dt
ÿ �vb ÿUd� 3

Rb

dRb

dt
: �A39�

The ¯uctuating part of vb is approximately 3Ud, and the average acceleration of the bubble
over a cycle is
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dvb

dt
� ÿ6po

2R3
0d

2

S
, b1 � 0 �A40a�

�
�
x2 � x1 ÿ 2x0

x2 ÿ x1

�
6po2R3

0d
2

S
, b1 � 1: �A40b�

If one end of the pipe is closed, the bubble will accelerate towards this end, as might be
expected from the classical analysis for two bubbles in unbounded liquid, equivalent to that for
one bubble in the presence of an in®nite plane wall. If both ends of the pipe are open, the
bubble will drift towards the centre of the pipe. The attraction between bubbles oscillating in
phase, or repulsion when out of phase, was known to C.A. Bjerknes, and details are given by
Bjerknes (1900). Other references are cited by Lamb (1932, p. 134).
Note that to obtain Eqs. (A40a) and (A40b) we have neglected terms which, though small,

depend upon the position �y0, z0� of the bubble within a cross-sectional plane. Slow drift
perpendicular to the axis of the pipe is therefore neglected. Since the radius of the pipe is small
compared to its length, this radial drift may ultimately be important.

A.5. Comparison with numerical work

We now use these results to check the accuracy of the numerical code described in Section 4.
Computations were performed with the inlet velocity U � 0 and Venturi throat diameter b � 1,
so that the pipe was straight with zero ¯ow at the entrance, corresponding to an admittance
b1 � 0:
We scale lengths by the pipe radius a, pressures by M=a3, velocities by �M=rla

3�1=2, and time
by �rla

5=M �1=2: Non-dimensional quantities are denoted by a circum¯ex (^). The non-
dimensional interfacial tension ŝ � sa2=M � 0:01 so that the e�ect of interfacial tension was
negligible. The initial volume of the bubble di�ered from that of a bubble at equilibrium by
1%, so that d � 0:00333 in Eq. (A26).
The period of oscillation is predicted by Eq. (A33) to be

T̂ � 2p
ô
� 2pR̂0ÿ

3p̂g
0

�1=2 �1� 4R̂0�x̂2 ÿ x̂0�
�1=2� 4pR̂

2

0

3

ÿ
pR̂0

�1=2�
1� 4R̂0�x̂2 ÿ x̂0�

�1=2
, �A41�

and the non-dimensional acceleration towards the rigid end of the pipe is (A40a):

dv̂b

dt̂
� ÿ6ô2R̂

3

0d
2: �A42�

In Figs. A2±A4, the analytic predictions (A41) are shown as curves, and simulation results are
shown as individual points. In Fig. A2, we see results for the period of oscillation T̂ as a
function of bubble radius R̂0 in a pipe with x̂0 ÿ x̂1 � 6, x̂2 ÿ x̂0 � 5: Agreement is good for
small bubbles, and also for bubbles which are only slightly smaller than the pipe diameter. As
discussed in Section A.3, if the pipe is su�ciently long the ®ne details of the ¯ow in the region
jxÿ x0j ' a are no longer important in determining the frequency of oscillation, and we see
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Fig. A2. The non-dimensional period T̂ as a function of bubble radius R̂0: x̂2 ÿ x̂0 � 5, x̂0 ÿ x̂1 � 6: Analytic
prediction (A41) ÐÐÐ ; numerical simulation w.

Fig. A3. The non-dimensional period T̂ as a function of x̂2 ÿ x̂0: Bubble radius R̂0 � 0:2, x̂0 ÿ x̂1 � 6: Analytic
prediction (A41) ÐÐÐ; numerical simulation w.
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Fig. A4. The non-dimensional period T̂ as a function of x̂2 ÿ x̂0: Bubble radius R̂0 � 0:5, x̂0 ÿ x̂1 � 6: Analytic
prediction (A41) ÐÐÐ; numerical simulation w.

Fig. A5. The position x̂0 of an oscillating bubble of radius R̂0 � 0:2 as it drifts in a tube closed at x̂1 � 0 and open
at x̂2 � 11: (a) Numerical simulation ÐÐÐ; (b) analytic prediction (A42) ± ± ± .
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from Eq. (A41) that this is the case when 4R̂0�x̂2 ÿ x̂0� � 1: The e�ect of pipe length is shown
in Fig. A3 for bubbles of radius R̂0 � 0:2 and in Fig. A4 for R̂0 � 0:5: In both cases x̂0 ÿ x̂1 �
6 is ®xed and x̂2 ÿ x̂0 is allowed to vary. Agreement is excellent, especially when the pipe
becomes long.
In Fig. A5 we see the position x̂0 of the centre of a bubble which oscillates in a tube closed

at x̂1 � 0 and open at x̂2 � 11: The bubble accelerates towards the closed end, as predicted by
Eq. (A42). Di�erences between the numerical simulation and the analysis of Section A.4 are
only noticeable at long times. Since the bubble is on the axis of symmetry, we do not expect
any drift in the radial direction.
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